原理:STL一共给我们提供了四种智能指针:auto_ptr、unique_ptr、shared_ptr和weak_ptr。
模板auto_ptr是C++98提供的解决方案,C+11已将将其摒弃,并提供了另外两种解决方案。然而,虽然auto_ptr被摒弃,但它已使用了好多年:同时,如果您的编译器不支持其他两种解决力案,auto_ptr将是唯一的选择。
所有的智能指针类都有一个explicit构造函数,以指针作为参数。比如auto_ptr的类模板原型为:
templet<class T>
class auto_ptr {
explicit auto_ptr(X* p = 0) ;
...
};
复制代码
因此意味着智能指针之间不允许隐式类型转换,对全部智能指针都应避免的一点:
string vacation("I wandered lonely as a cloud.");
shared_ptr<string> pvac(&vacation); // No
复制代码
不应将智能指针指向非堆内存变量,尤其是临时变量,运用delete时将导致未定义行为
先来看下面的赋值语句:
auto_ptr<string> ps (new string ("I reigned lonely as a cloud.”);
auto_ptr<string> vocation;
vocaticn = ps;
复制代码
上述赋值语句将完成什么工作呢?如果ps和vocation是常规指针,则两个指针将指向同一个string对象。这是不能接受的,因为程序将试图删除同一个对象两次——一次是ps过期时,另一次是vocation过期时。要避免这种问题,方法有多种:
每种方法都有其用途,但为何说要摒弃auto_ptr呢?下面举个例子来说明:
#include <iostream>
#include <string>
#include <memory>
using namespace std;
int main() {
auto_ptr<string> films[5] =
{
auto_ptr<string> (new string("Fowl Balls")),
auto_ptr<string> (new string("Duck Walks")),
auto_ptr<string> (new string("Chicken Runs")),
auto_ptr<string> (new string("Turkey Errors")),
auto_ptr<string> (new string("Goose Eggs"))
};
auto_ptr<string> pwin;
pwin = films[2]; // films[2] loses ownership. 将所有权从films[2]转让给pwin,此时films[2]不再引用该字符串从而变成空指针
cout << "The nominees for best avian baseballl film are\n";
for(int i = 0; i < 5; ++i)
cout << *films[i] << endl;
cout << "The winner is " << *pwin << endl;
cin.get();
return 0;
}
复制代码
运行下发现程序崩溃了,原因在上面注释已经说的很清楚,films[2]已经是空指针了,下面输出访问空指针当然会崩溃了。但这里如果把auto_ptr换成shared_ptr或unique_ptr后,程序就不会崩溃,原因如下:
unique_ptr<string> pwin;
pwin = films[2]; // films[2] loses ownership.
复制代码
指导你发现潜在的内存错误。
这就是为何要摒弃auto_ptr的原因,一句话总结就是:避免潜在的内存崩溃问题。
可能大家认为前面的例子已经说明了unique_ptr为何优于auto_ptr,也就是安全问题,下面再叙述的清晰一点。请看下面的语句:
auto_ptr<string> p1(new string ("auto") ; //#1
auto_ptr<string> p2; //#2
p2 = p1; //#3
复制代码
在语句#3中,p2接管string对象的所有权后,p1的所有权将被剥夺。前面说过,这是好事,可防止p1和p2的析构函数试图刪同—个对象;但如果程序随后试图使用p1,这将是件坏事,因为p1不再指向有效的数据。
下面来看使用unique_ptr的情况:
unique_ptr<string> p3 (new string ("auto"); //#4
unique_ptr<string> p4; //#5
p4 = p3; //#6
复制代码
编译器认为语句#6非法,避免了p3不再指向有效数据的问题。因此,unique_ptr比auto_ptr更安全。
但unique_ptr还有更聪明的地方。 有时候,会将一个智能指针赋给另一个并不会留下危险的悬挂指针。假设有如下函数定义:
unique_ptr<string> demo(const char * s)
{
unique_ptr<string> temp (new string (s));
return temp;
}
复制代码
并假设编写了如下代码:
unique_ptr<string> ps;
ps = demo('Uniquely special");
复制代码
demo()返回一个临时unique_ptr,然后ps接管了原本归返回的unique_ptr所有的对象,而返回时临时的 unique_ptr 被销毁,也就是说没有机会使用 unique_ptr 来访问无效的数据,换句话来说,这种赋值是不会出现任何问题的,即没有理由禁止这种赋值。实际上,编译器确实允许这种赋值,这正是unique_ptr更聪明的地方。
总之,党程序试图将一个 unique_ptr 赋值给另一个时,如果源 unique_ptr 是个临时右值,编译器允许这么做;如果源 unique_ptr 将存在一段时间,编译器将禁止这么做,比如:
unique_ptr<string> pu1(new string ("hello world"));
unique_ptr<string> pu2;
pu2 = pu1; // #1 not allowed
unique_ptr<string> pu3;
pu3 = unique_ptr<string>(new string ("You")); // #2 allowed
复制代码
当然,您可能确实想执行类似于#1的操作,仅当以非智能的方式使用摒弃的智能指针时(如解除引用时),这种赋值才不安全。要安全的重用这种指针,可给它赋新值。C++有一个标准库函数std::move(),让你能够将一个unique_ptr赋给另一个。下面是一个使用前述demo()函数的例子,该函数返回一个unique_ptr对象: 使用move后,原来的指针仍转让所有权变成空指针,可以对其重新赋值:
unique_ptr<string> ps1, ps2;
ps1 = demo("hello");
ps2 = move(ps1);
ps1 = demo("alexia");
cout << *ps2 << *ps1 << endl;
复制代码
在掌握了这几种智能指针后,大家可能会想另一个问题:在实际应用中,应使用哪种智能指针呢? 下面给出几个使用指南:
unique_ptr<int> make_int(int n)
{
return unique_ptr<int>(new int(n));
}
void show(unique_ptr<int> &p1)
{
cout << *a << ' ';
}
int main()
{
...
vector<unique_ptr<int> > vp(size);
for(int i = 0; i < vp.size(); i++)
vp[i] = make_int(rand() % 1000); // copy temporary unique_ptr
vp.push_back(make_int(rand() % 1000)); // ok because arg is temporary
for_each(vp.begin(), vp.end(), show); // use for_each()
...
}
复制代码
其中push_back调用没有问题,因为它返回一个临时unique_ptr,该unique_ptr被赋给vp中的一个unique_ptr。另外,如果按值而不是按引用给show()传递对象,for_each()将非法,因为这将导致使用一个来自vp的非临时unique_ptr初始化pi,而这是不允许的。前面说过,编译器将发现错误使用unique_ptr的企图。
在unique_ptr为右值时,可将其赋给shared_ptr,这与将一个unique_ptr赋给一个需要满足的条件相同。与前面一样,在下面的代码中,make_int()的返回类型为unique_ptr:
unique_ptr<int> pup(make_int(rand() % 1000)); // ok
shared_ptr<int> spp(pup); // not allowed, pup as lvalue
shared_ptr<int> spr(make_int(rand() % 1000)); // ok
复制代码
模板shared_ptr包含一个显式构造函数,可用于将右值unique_ptr转换为shared_ptr。shared_ptr将接管原来归unique_ptr所有的对象。
在满足unique_ptr要求的条件时,也可使用auto_ptr,但unique_ptr是更好的选择。如果你的编译器没有unique_ptr,可考虑使用Boost库提供的scoped_ptr,它与unique_ptr类似。
和 shared_ptr、unique_ptr 类型指针一样,weak_ptr 智能指针也是以模板类的方式实现的。weak_ptr( T 为指针所指数据的类型)定义在头文件,并位于 std 命名空间中。因此,要想使用 weak_ptr 类型指针,程序中应首先包含如下 2 条语句:
#include <memory>
using namespace std;
复制代码
需要注意的是,C++11标准虽然将 weak_ptr 定位为智能指针的一种,但该类型指针通常不单独使用(没有实际用处),只能和 shared_ptr 类型指针搭配使用。甚至于,我们可以将 weak_ptr 类型指针视为 shared_ptr 指针的一种辅助工具,借助 weak_ptr 类型指针, 我们可以获取 shared_ptr 指针的一些状态信息,比如有多少指向相同的 shared_ptr 指针、shared_ptr 指针指向的堆内存是否已经被释放等等。
需要注意的是,当 weak_ptr 类型指针的指向和某一 shared_ptr 指针相同时,weak_ptr 指针并不会使所指堆内存的引用计数加 1;同样,当 weak_ptr 指针被释放时,之前所指堆内存的引用计数也不会因此而减 1。也就是说,weak_ptr 类型指针并不会影响所指堆内存空间的引用计数。
除此之外,weak_ptr 模板类中没有重载 * 和 -> 运算符,这也就意味着,weak_ptr 类型指针只能访问所指的堆内存,而无法修改它。
对于弱引用来说, 当引用的对象活着的时候弱引用不一定存在. 仅仅是当它存在的时候的一个引用, 弱引用并不修改该对象的引用计数, 这意味这弱引用它并不对对象的内存进行管理。
weak_ptr 在功能上类似于普通指针, 然而一个比较大的区别是, 弱引用能检测到所管理的对象是否已经被释放, 从而避免访问非法内存。
注意: 虽然通过弱引用指针可以有效的解除循环引用, 但这种方式必须在程序员能预见会出现循环引用的情况下才能使用, 也可以是说这个仅仅是一种编译期的解决方案, 如果程序在运行过程中出现了循环引用, 还是会造成内存泄漏。
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!