page contents

Golang 面试题目(从基础到高级)

1. 互斥锁,读写锁,死锁问题是怎么解决。 互斥锁 互斥锁就是互斥变量mutex,用来锁住临界区的. 条件锁就是条件变量,当进程的某些资源要求不满足时就进入休眠,也就是锁住了。当资源被...

attachments-2021-07-5XFJXBvn60ebb7fcd9605.png

1. 互斥锁,读写锁,死锁问题是怎么解决。

  • 互斥锁

互斥锁就是互斥变量mutex,用来锁住临界区的.

条件锁就是条件变量,当进程的某些资源要求不满足时就进入休眠,也就是锁住了。当资源被分配到了,条件锁打开,进程继续运行;读写锁,也类似,用于缓冲区等临界资源能互斥访问的。

  • 读写锁

通常有些公共数据修改的机会很少,但其读的机会很多。并且在读的过程中会伴随着查找,给这种代码加锁会降低我们的程序效率。读写锁可以解决这个问题。

注意:写独占,读共享,写锁优先级高

  • 死锁

一般情况下,如果同一个线程先后两次调用lock,在第二次调用时,由于锁已经被占用,该线程会挂起等待别的线程释放锁,然而锁正是被自己占用着的,该线程又被挂起而没有机会释放锁,因此就永远处于挂起等待状态了,这叫做死锁(Deadlock)。 另外一种情况是:若线程A获得了锁1,线程B获得了锁2,这时线程A调用lock试图获得锁2,结果是需要挂起等待线程B释放锁2,而这时线程B也调用lock试图获得锁1,结果是需要挂起等待线程A释放锁1,于是线程A和B都永远处于挂起状态了。

死锁产生的四个必要条件:

  1. 互斥条件:一个资源每次只能被一个进程使用
  2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
  4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。 这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。

a. 预防死锁

可以把资源一次性分配:(破坏请求和保持条件)

然后剥夺资源:即当某进程新的资源未满足时,释放已占有的资源(破坏不可剥夺条件)

资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反(破坏环路等待条件)

b. 避免死锁

预防死锁的几种策略,会严重地损害系统性能。因此在避免死锁时,要施加较弱的限制,从而获得 较满意的系统性能。由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法。

c. 检测死锁

首先为每个进程和每个资源指定一个唯一的号码,然后建立资源分配表和进程等待表.

d. 解除死锁

当发现有进程死锁后,便应立即把它从死锁状态中解脱出来,常采用的方法有.

e. 剥夺资源

从其它进程剥夺足够数量的资源给死锁进程,以解除死锁状态.

f. 撤消进程

可以直接撤消死锁进程或撤消代价最小的进程,直至有足够的资源可用,死锁状态.消除为止.所谓代价是指优先级、运行代价、进程的重要性和价值等。

2. Golang的内存模型,为什么小对象多了会造成gc压力。

通常小对象过多会导致GC三色法消耗过多的GPU。优化思路是,减少对象分配.

3. Data Race问题怎么解决?能不能不加锁解决这个问题?

同步访问共享数据是处理数据竞争的一种有效的方法.golang在1.1之后引入了竞争检测机制,可以使用 go run -race 或者 go build -race来进行静态检测。 其在内部的实现是,开启多个协程执行同一个命令, 并且记录下每个变量的状态.

竞争检测器基于C/C++的ThreadSanitizer 运行时库,该库在Google内部代码基地和Chromium找到许多错误。这个技术在2012年九月集成到Go中,从那时开始,它已经在标准库中检测到42个竞争条件。现在,它已经是我们持续构建过程的一部分,当竞争条件出现时,它会继续捕捉到这些错误。

竞争检测器已经完全集成到Go工具链中,仅仅添加-race标志到命令行就使用了检测器。

要想解决数据竞争的问题可以使用互斥锁sync.Mutex,解决数据竞争(Data race),也可以使用管道解决,使用管道的效率要比互斥锁高.

4. 什么是channel,为什么它可以做到线程安全?

Channel是Go中的一个核心类型,可以把它看成一个管道,通过它并发核心单元就可以发送或者接收数据进行通讯(communication),Channel也可以理解是一个先进先出的队列,通过管道进行通信。

Golang的Channel,发送一个数据到Channel 和 从Channel接收一个数据 都是 原子性的。而且Go的设计思想就是:不要通过共享内存来通信,而是通过通信来共享内存,前者就是传统的加锁,后者就是Channel。也就是说,设计Channel的主要目的就是在多任务间传递数据的,这当然是安全的。

5. 并发编程概念是什么?

并行是指两个或者多个事件在同一时刻发生;并发是指两个或多个事件在同一时间间隔发生。

并行是在不同实体上的多个事件,并发是在同一实体上的多个事件。在一台处理器上“同时”处理多个任务,在多台处理器上同时处理多个任务。如hadoop分布式集群

并发偏重于多个任务交替执行,而多个任务之间有可能还是串行的。而并行是真正意义上的“同时执行”。

并发编程是指在一台处理器上“同时”处理多个任务。并发是在同一实体上的多个事件。多个事件在同一时间间隔发生。并发编程的目标是充分的利用处理器的每一个核,以达到最高的处理性能。

6. 负载均衡原理是什么?

负载均衡Load Balance)是高可用网络基础架构的关键组件,通常用于将工作负载分布到多个服务器来提高网站、应用、数据库或其他服务的性能和可靠性。负载均衡,其核心就是网络流量分发,分很多维度。

负载均衡(Load Balance)通常是分摊到多个操作单元上进行执行,例如Web服务器、FTP服务器、企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务。

负载均衡是建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。

通过一个例子详细介绍:

  • 没有负载均衡 web 架构

在这里用户是直连到 web 服务器,如果这个服务器宕机了,那么用户自然也就没办法访问了。 另外,如果同时有很多用户试图访问服务器,超过了其能处理的极限,就会出现加载速度缓慢或根本无法连接的情况。

而通过在后端引入一个负载均衡器和至少一个额外的 web 服务器,可以缓解这个故障。 通常情况下,所有的后端服务器会保证提供相同的内容,以便用户无论哪个服务器响应,都能收到一致的内容。

  • 有负载均衡 web 架构

用户访问负载均衡器,再由负载均衡器将请求转发给后端服务器。在这种情况下,单点故障现在转移到负载均衡器上了。 这里又可以通过引入第二个负载均衡器来缓解。

那么负载均衡器的工作方式是什么样的呢,负载均衡器又可以处理什么样的请求?

负载均衡器的管理员能主要为下面四种主要类型的请求设置转发规则:

  • HTTP (七层)
  • HTTPS (七层)
  • TCP (四层)
  • UDP (四层)

负载均衡器如何选择要转发的后端服务器?

负载均衡器一般根据两个因素来决定要将请求转发到哪个服务器。首先,确保所选择的服务器能够对请求做出响应,然后根据预先配置的规则从健康服务器池(healthy pool)中进行选择。

因为,负载均衡器应当只选择能正常做出响应的后端服务器,因此就需要有一种判断后端服务器是否健康的方法。为了监视后台服务器的运行状况,运行状态检查服务会定期尝试使用转发规则定义的协议和端口去连接后端服务器。 如果,服务器无法通过健康检查,就会从池中剔除,保证流量不会被转发到该服务器,直到其再次通过健康检查为止。

负载均衡算法

负载均衡算法决定了后端的哪些健康服务器会被选中。 其中常用的算法包括:

  • Round Robin(轮询):为第一个请求选择列表中的第一个服务器,然后按顺序向下移动列表直到结尾,然后循环。
  • Least Connections(最小连接):优先选择连接数最少的服务器,在普遍会话较长的情况下推荐使用。
  • Source:根据请求源的 IP 的散列(hash)来选择要转发的服务器。这种方式可以一定程度上保证特定用户能连接到相同的服务器。

如果你的应用需要处理状态而要求用户能连接到和之前相同的服务器。可以通过 Source 算法基于客户端的 IP 信息创建关联,或者使用粘性会话(sticky sessions)。

除此之外,想要解决负载均衡器的单点故障问题,可以将第二个负载均衡器连接到第一个上,从而形成一个集群。

7. LVS相关了解.

LVS是 Linux Virtual Server 的简称,也就是Linux虚拟服务器。这是一个由章文嵩博士发起的一个开源项目,它的官方网站是LinuxVirtualServer现在 LVS 已经是 Linux 内核标准的一部分。使用 LVS 可以达到的技术目标是:通过 LVS 达到的负载均衡技术和 Linux 操作系统实现一个高性能高可用的 Linux 服务器集群,它具有良好的可靠性、可扩展性和可操作性。 从而以低廉的成本实现最优的性能。LVS 是一个实现负载均衡集群的开源软件项目,LVS架构从逻辑上可分为调度层、Server集群层和共享存储。

LVS的基本工作原理:

  1. 当用户向负载均衡调度器(Director Server)发起请求,调度器将请求发往至内核空间
  2. PREROUTING链首先会接收到用户请求,判断目标IP确定是本机IP,将数据包发往INPUT链
  3. IPVS是工作在INPUT链上的,当用户请求到达INPUT时,IPVS会将用户请求和自己已定义好的集群服务进行比对,如果用户请求的就是定义的集群服务,那么此时IPVS会强行修改数据包里的目标IP地址及端口,并将新的数据包发往POSTROUTING链
  4. POSTROUTING链接收数据包后发现目标IP地址刚好是自己的后端服务器,那么此时通过选路,将数据包最终发送给后端的服务器

LVS的组成:

LVS 由2部分程序组成,包括 ipvs 和 ipvsadm。

  1. ipvs(ip virtual server):一段代码工作在内核空间,叫ipvs,是真正生效实现调度的代码。
  2. ipvsadm:另外一段是工作在用户空间,叫ipvsadm,负责为ipvs内核框架编写规则,定义谁是集群服务,而谁是后端真实的服务器(Real Server)

详细的LVS的介绍可以参考LVS详解.

8. 微服务架构是什么样子的?

通常传统的项目体积庞大,需求、设计、开发、测试、部署流程固定。新功能需要在原项目上做修改。

但是微服务可以看做是对大项目的拆分,是在快速迭代更新上线的需求下产生的。新的功能模块会发布成新的服务组件,与其他已发布的服务组件一同协作。 服务内部有多个生产者和消费者,通常以http rest的方式调用,服务总体以一个(或几个)服务的形式呈现给客户使用。

微服务架构是一种思想对微服务架构我们没有一个明确的定义,但简单来说微服务架构是:

采用一组服务的方式来构建一个应用,服务独立部署在不同的进程中,不同服务通过一些轻量级交互机制来通信,例如 RPC、HTTP 等,服务可独立扩展伸缩,每个服务定义了明确的边界,不同的服务甚至可以采用不同的编程语言来实现,由独立的团队来维护。

Golang的微服务框架kit中有详细的微服务的例子,可以参考学习.

微服务架构设计包括:

  1. 服务熔断降级限流机制 熔断降级的概念(Rate Limiter 限流器,Circuit breaker 断路器).
  2. 框架调用方式解耦方式 Kit 或 Istio 或 Micro 服务发现(consul zookeeper kubeneters etcd ) RPC调用框架.
  3. 链路监控,zipkin和prometheus.
  4. 多级缓存.
  5. 网关 (kong gateway).
  6. Docker部署管理 Kubenetters.
  7. 自动集成部署 CI/CD 实践.
  8. 自动扩容机制规则.
  9. 压测 优化.
  10. Trasport 数据传输(序列化和反序列化).
  11. Logging 日志.
  12. Metrics 指针对每个请求信息的仪表盘化.

微服务架构介绍详细的可以参考:

  • Microservice Architectures

9. 分布式锁实现原理,用过吗?

在分析分布式锁的三种实现方式之前,先了解一下分布式锁应该具备哪些条件:

  1. 在分布式系统环境下,一个方法在同一时间只能被一个机器的一个线程执行;
  2. 高可用的获取锁与释放锁;
  3. 高性能的获取锁与释放锁;
  4. 具备可重入特性;
  5. 具备锁失效机制,防止死锁;
  6. 具备非阻塞锁特性,即没有获取到锁将直接返回获取锁失败。

分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

通常分布式锁以单独的服务方式实现,目前比较常用的分布式锁实现有三种:

  • 基于数据库实现分布式锁。
  • 基于缓存(redis,memcached,tair)实现分布式锁。
  • 基于Zookeeper实现分布式锁。

尽管有这三种方案,但是不同的业务也要根据自己的情况进行选型,他们之间没有最好只有更适合!

  • 基于数据库的实现方式

基于数据库的实现方式的核心思想是:在数据库中创建一个表,表中包含方法名等字段,并在方法名字段上创建唯一索引,想要执行某个方法,就使用这个方法名向表中插入数据,成功插入则获取锁,执行完成后删除对应的行数据释放锁。

因为我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。

注意:这里只是使用基于数据库的一种方法,使用数据库实现分布式锁还有很多其他的用法可以实现!

使用基于数据库的这种实现方式很简单,但是对于分布式锁应该具备的条件来说,它有一些问题需要解决及优化:

1、因为是基于数据库实现的,数据库的可用性和性能将直接影响分布式锁的可用性及性能,所以,数据库需要双机部署、数据同步、主备切换;

2、不具备可重入的特性,因为同一个线程在释放锁之前,行数据一直存在,无法再次成功插入数据,所以,需要在表中新增一列,用于记录当前获取到锁的机器和线程信息,在再次获取锁的时候,先查询表中机器和线程信息是否和当前机器和线程相同,若相同则直接获取锁;

3、没有锁失效机制,因为有可能出现成功插入数据后,服务器宕机了,对应的数据没有被删除,当服务恢复后一直获取不到锁,所以,需要在表中新增一列,用于记录失效时间,并且需要有定时任务清除这些失效的数据;

4、不具备阻塞锁特性,获取不到锁直接返回失败,所以需要优化获取逻辑,循环多次去获取。

5、在实施的过程中会遇到各种不同的问题,为了解决这些问题,实现方式将会越来越复杂;依赖数据库需要一定的资源开销,性能问题需要考虑。

  • 基于Redis的实现方式

选用Redis实现分布式锁原因:

  1. Redis有很高的性能;
  2. Redis命令对此支持较好,实现起来比较方便

主要实现方式:

  1. SET lock currentTime+expireTime EX 600 NX,使用set设置lock值,并设置过期时间为600秒,如果成功,则获取锁;
  2. 获取锁后,如果该节点掉线,则到过期时间ock值自动失效;
  3. 释放锁时,使用del删除lock键值;

使用redis单机来做分布式锁服务,可能会出现单点问题,导致服务可用性差,因此在服务稳定性要求高的场合,官方建议使用redis集群(例如5台,成功请求锁超过3台就认为获取锁),来实现redis分布式锁。详见RedLock。

优点:性能高,redis可持久化,也能保证数据不易丢失,redis集群方式提高稳定性。

缺点:使用redis主从切换时可能丢失部分数据。

  • 基于ZooKeeper的实现方式

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

  1. 创建一个目录mylock;
  2. 线程A想获取锁就在mylock目录下创建临时顺序节点;
  3. 获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
  4. 线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
  5. 线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。

缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。

上面的三种实现方式,没有在所有场合都是完美的,所以,应根据不同的应用场景选择最适合的实现方式。

在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。

10. Etcd怎么实现分布式锁?

首先思考下Etcd是什么?可能很多人第一反应可能是一个键值存储仓库,却没有重视官方定义的后半句,用于配置共享和服务发现。

实际上,etcd 作为一个受到 ZooKeeper 与 doozer 启发而催生的项目,除了拥有与之类似的功能外,更专注于以下四点。

  • 简单:基于 HTTP+JSON 的 API 让你用 curl 就可以轻松使用。
  • 安全:可选 SSL 客户认证机制。
  • 快速:每个实例每秒支持一千次写操作。
  • 可信:使用 Raft 算法充分实现了分布式。

但是这里我们主要讲述Etcd如何实现分布式锁?

因为 Etcd 使用 Raft 算法保持了数据的强一致性,某次操作存储到集群中的值必然是全局一致的,所以很容易实现分布式锁。锁服务有两种使用方式,一是保持独占,二是控制时序。

  • 保持独占即所有获取锁的用户最终只有一个可以得到。etcd 为此提供了一套实现分布式锁原子操作 CAS(CompareAndSwap)的 API。通过设置prevExist值,可以保证在多个节点同时去创建某个目录时,只有一个成功。而创建成功的用户就可以认为是获得了锁。

  • 控制时序,即所有想要获得锁的用户都会被安排执行,但是获得锁的顺序也是全局唯一的,同时决定了执行顺序。etcd 为此也提供了一套 API(自动创建有序键),对一个目录建值时指定为POST动作,这样 etcd 会自动在目录下生成一个当前最大的值为键,存储这个新的值(客户端编号)。同时还可以使用 API 按顺序列出所有当前目录下的键值。此时这些键的值就是客户端的时序,而这些键中存储的值可以是代表客户端的编号。

更多相关技术内容咨询欢迎前往并持续关注六星社区了解详情。

程序员编程交流QQ群:805358732

如果你想用Python开辟副业赚钱,但不熟悉爬虫与反爬虫技术,没有接单途径,也缺乏兼职经验
关注下方微信公众号:Python编程学习圈,获取价值999元全套Python入门到进阶的学习资料以及教程,还有Python技术交流群一起交流学习哦。

attachments-2022-06-mkjmFgOX62ad3bff0c7b8.jpeg

  • 发表于 2021-07-12 11:37
  • 阅读 ( 1005 )
  • 分类:Golang

0 条评论

请先 登录 后评论
轩辕小不懂
轩辕小不懂

2403 篇文章

作家榜 »

  1. 轩辕小不懂 2403 文章
  2. 小柒 1324 文章
  3. Pack 1135 文章
  4. Nen 576 文章
  5. 王昭君 209 文章
  6. 文双 71 文章
  7. 小威 64 文章
  8. Cara 36 文章