page contents

基于tensorflow 实现端到端的OCR:二代身份证号识别

最近在研究OCR识别相关的东西,最终目标是能识别身份证上的所有中文汉字+数字,不过本文先设定一个小目标,先识别定长为18的身份证号,当然本文的思路也是可以复用来识别定长的验证码识别的。...

最近在研究OCR识别相关的东西,最终目标是能识别身份证上的所有中文汉字+数字,不过本文先设定一个小目标,先识别定长为18的身份证号,当然本文的思路也是可以复用来识别定长的验证码识别的。 本文实现思路主要来源于Xlvector的博客,采用基于CNN实现端到端的OCR,下面引用博文介绍目前基于深度学习的两种OCR识别方法:

  • 把OCR的问题当做一个多标签学习的问题。4个数字组成的验证码就相当于有4个标签的图片识别问题(这里的标签还是有序的),用CNN来解决。
  • 把OCR的问题当做一个语音识别的问题,语音识别是把连续的音频转化为文本,验证码识别就是把连续的图片转化为文本,用CNN+LSTM+CTC来解决。

这里方法1主要用来解决固定长度标签的图片识别问题,而方法2主要用来解决不定长度标签的图片识别问题,本文实现方法1识别固定18个数字字符的身份证号。

##环境依赖

  1. 本文基于tensorflow框架实现,依赖于tensorflow环境,建议使用anaconda进行python包管理及环境管理
  2. 本文使用freetype-py 进行训练集图片的实时生成,同时后续也可扩展为能生成中文字符图片的训练集,建议使用pip安装
 pip install freetype-py
  1. 同时本文还依赖于numpy和opencv等常用库
 pip install numpy cv2

##知识准备

  1. 本文不具体介绍CNN (卷积神经网络)具体实现原理,不熟悉的建议参看集智博文卷积:如何成为一个很厉害的神经网络,这篇文章写得很
  2. 本文实现思路很容易理解,就是把一个有序排列18个数字组成的图片当做一个多标签学习的问题,标签的长度可以任意改变,只要是固定长度的,这个训练方法都是适用的,当然现实中很多情况是需要识别不定长度的标签的,这部分就需要使用方法2(CNN+lSTM+CTC)来解决了。

##正文 ###训练数据集生成 首先先完成训练数据集图片的生成,主要依赖于freetype-py库生成数字/中文的图片。其中要注意的一点是就是生成图片的大小,本文经过多次尝试后,生成的图片是32 x 256大小的,如果图片太大,则可能导致训练不收敛

生成出来的示例图片如下:

基于tensorflow 实现端到端的OCR:二代身份证号识别

gen_image()方法返回 image_data:图片像素数据 (32,256) label: 图片标签 18位数字字符 477081933151463759 vec : 图片标签转成向量表示 (180,) 代表每个数字所处的列,总长度 18 * 10

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
身份证文字+数字生成类
@author: pengyuanjie
"""
import numpy as np
import freetype
import copy
import random
import cv2
class put_chinese_text(object):
def __init__(self, ttf):
self._face = freetype.Face(ttf)
def draw_text(self, image, pos, text, text_size, text_color):
'''
draw chinese(or not) text with ttf
:param image: image(numpy.ndarray) to draw text
:param pos: where to draw text
:param text: the context, for chinese should be unicode type
:param text_size: text size
:param text_color:text color
:return: image
'''
self._face.set_char_size(text_size * 64)
metrics = self._face.size
ascender = metrics.ascender/64.0
#descender = metrics.descender/64.0
#height = metrics.height/64.0
#linegap = height - ascender + descender
ypos = int(ascender)
if not isinstance(text, unicode):
text = text.decode('utf-8')
img = self.draw_string(image, pos[0], pos[1]+ypos, text, text_color)
return img
def draw_string(self, img, x_pos, y_pos, text, color):
'''
draw string
:param x_pos: text x-postion on img
:param y_pos: text y-postion on img
:param text: text (unicode)
:param color: text color
:return: image
'''
prev_char = 0
pen = freetype.Vector()
pen.x = x_pos << 6 # div 64
pen.y = y_pos << 6
hscale = 1.0
matrix = freetype.Matrix(int(hscale)*0x10000L, int(0.2*0x10000L),\
int(0.0*0x10000L), int(1.1*0x10000L))
cur_pen = freetype.Vector()
pen_translate = freetype.Vector()
image = copy.deepcopy(img)
for cur_char in text:
self._face.set_transform(matrix, pen_translate)
self._face.load_char(cur_char)
kerning = self._face.get_kerning(prev_char, cur_char)
pen.x += kerning.x
slot = self._face.glyph
bitmap = slot.bitmap
cur_pen.x = pen.x
cur_pen.y = pen.y - slot.bitmap_top * 64
self.draw_ft_bitmap(image, bitmap, cur_pen, color)
pen.x += slot.advance.x
prev_char = cur_char
return image
def draw_ft_bitmap(self, img, bitmap, pen, color):
'''
draw each char
:param bitmap: bitmap
:param pen: pen
:param color: pen color e.g.(0,0,255) - red
:return: image
'''
x_pos = pen.x >> 6
y_pos = pen.y >> 6
cols = bitmap.width
rows = bitmap.rows
glyph_pixels = bitmap.buffer
for row in range(rows):
for col in range(cols):
if glyph_pixels[row*cols + col] != 0:
img[y_pos + row][x_pos + col][0] = color[0]
img[y_pos + row][x_pos + col][1] = color[1]
img[y_pos + row][x_pos + col][2] = color[2]
class gen_id_card(object):
def __init__(self):
#self.words = open('AllWords.txt', 'r').read().split(' ')
self.number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
self.char_set = self.number
#self.char_set = self.words + self.number
self.len = len(self.char_set)

self.max_size = 18
self.ft = put_chinese_text('fonts/OCR-B.ttf')

#随机生成字串,长度固定
#返回text,及对应的向量
def random_text(self):
text = ''
vecs = np.zeros((self.max_size * self.len))
#size = random.randint(1, self.max_size)
size = self.max_size
for i in range(size):
c = random.choice(self.char_set)
vec = self.char2vec(c)
text = text + c
vecs[i*self.len:(i+1)*self.len] = np.copy(vec)
return text,vecs

#根据生成的text,生成image,返回标签和图片元素数据
def gen_image(self):
text,vec = self.random_text()
img = np.zeros([32,256,3])
color_ = (255,255,255) # Write
pos = (0, 0)
text_size = 21
image = self.ft.draw_text(img, pos, text, text_size, color_)
#仅返回单通道值,颜色对于汉字识别没有什么意义
return image[:,:,2],text,vec
#单字转向量
def char2vec(self, c):
vec = np.zeros((self.len))
for j in range(self.len):
if self.char_set[j] == c:
vec[j] = 1
return vec

#向量转文本
def vec2text(self, vecs):
text = ''
v_len = len(vecs)
for i in range(v_len):
if(vecs[i] == 1):
text = text + self.char_set[i % self.len]
return text
if __name__ == '__main__':
genObj = gen_id_card()
image_data,label,vec = genObj.gen_image()
cv2.imshow('image', image_data)
cv2.waitKey(0)

###构建网络,开始训练 首先定义生成一个batch的方法:

# 生成一个训练batch
def get_next_batch(batch_size=128):
obj = gen_id_card()
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])


for i in range(batch_size):
image, text, vec = obj.gen_image()
batch_x[i,:] = image.reshape((IMAGE_HEIGHT*IMAGE_WIDTH))
batch_y[i,:] = vec
return batch_x, batch_y

用了Batch Normalization,个人还不是很理解,读者可自行百度,代码来源于参考博文

#Batch Normalization? 有空再理解,tflearn or slim都有封装
## http://stackoverflow.com/a/34634291/2267819
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
with tf.variable_scope(scope):
#beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
#gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed

定义4层CNN和一层全连接层,卷积核分别是2层5x5、2层3x3,每层均使用tf.nn.relu非线性化,并使用max_pool,网络结构读者可自行调参优化

# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

# 4 conv layer
w_c1 = tf.Variable(w_alpha*tf.random_normal([5, 5, 1, 32]))
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
conv1 = tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)
conv1 = batch_norm(conv1, tf.constant(0.0, shape=[32]), tf.random_normal(shape=[32], mean=1.0, stddev=0.02), train_phase, scope='bn_1')
conv1 = tf.nn.relu(conv1)
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)

w_c2 = tf.Variable(w_alpha*tf.random_normal([5, 5, 32, 64]))
b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
conv2 = tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)
conv2 = batch_norm(conv2, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_2')
conv2 = tf.nn.relu(conv2)
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)

w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
conv3 = tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)
conv3 = batch_norm(conv3, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_3')
conv3 = tf.nn.relu(conv3)
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
w_c4 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
b_c4 = tf.Variable(b_alpha*tf.random_normal([64]))
conv4 = tf.nn.bias_add(tf.nn.conv2d(conv3, w_c4, strides=[1, 1, 1, 1], padding='SAME'), b_c4)
conv4 = batch_norm(conv4, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_4')
conv4 = tf.nn.relu(conv4)
conv4 = tf.nn.max_pool(conv4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv4 = tf.nn.dropout(conv4, keep_prob)

# Fully connected layer
w_d = tf.Variable(w_alpha*tf.random_normal([2*16*64, 1024]))
b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
dense = tf.reshape(conv4, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)

w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
return out

最后执行训练,使用sigmoid分类,每100次计算一次准确率,如果准确率超过80%,则保存模型并结束训练

# 训练
def train_crack_captcha_cnn():
output = crack_captcha_cnn()
# loss
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
# 最后一层用来分类的softmax和sigmoid有什么不同?
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss)

predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

step = 0
while True:
batch_x, batch_y = get_next_batch(64)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75, train_phase:True})
print(step, loss_)

# 每100 step计算一次准确率
if step % 100 == 0 and step != 0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1., train_phase:False})
print "第%s步,训练准确率为:%s" % (step, acc)
# 如果准确率大80%,保存模型,完成训练
if acc > 0.8:
saver.save(sess, "crack_capcha.model", global_step=step)
break
step += 1

执行结果,笔者在大概500次训练后,得到准确率84.3%的结果

基于tensorflow 实现端到端的OCR:二代身份证号识别

笔者在一开始训练的时候图片大小是64 x 512的,训练的时候发现训练速度很慢,而且训练的loss不收敛一直保持在33左右,缩小图片为32 x 256后解决,不知道为啥,猜测要么是网络层级不够,或者特征层数不够吧。

小目标完成后,为了最终目标的完成,后续可能尝试方法2,去识别不定长的中文字符图片,不过要先去理解LSTM网络和 CTC模型了。

下载地址:https://github.com/jimmyleaf/ocr_tensorflow_cnn/archive/master.zip

  • 发表于 2020-02-28 16:54
  • 阅读 ( 822 )
  • 分类:Python开发

你可能感兴趣的文章

相关问题

0 条评论

请先 登录 后评论
Pack
Pack

1135 篇文章

作家榜 »

  1. 轩辕小不懂 2403 文章
  2. 小柒 1470 文章
  3. Pack 1135 文章
  4. Nen 576 文章
  5. 王昭君 209 文章
  6. 文双 71 文章
  7. 小威 64 文章
  8. Cara 36 文章