page contents

C语言-经典算法-完美数

C语言-经典算法-完美数
完美数
说明如果有一数n其真因数Proper factor的总和等于n则称之为完美数(Perfect Number),
例如以下几个数都是完美数:
6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14
496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
程式基本上不难,第一眼看到时会想到使用回圈求出所有真因数,再进一步求因数和,不过若n
值很大,则此法会花费许多时间在回圈测试上,十分没有效率,例如求小于10000的所有完美数 。
解法如何求小于10000的所有完美数?并将程式写的有效率?基本上有三个步骤:
求出一定数目的质数表
利用质数表求指定数的因式分解
利用因式分解求所有真因数和,并检查是否为完美数
步骤一 与 步骤二 在之前讨论过了,问题在步骤三,如何求真因数和?方法很简单,要先知道
将所有真因数和加上该数本身,会等于该数的两倍,例如:
2 * 28 = 1 + 2 + 4 + 7 + 14 + 28
等式后面可以化为:
2 * 28 = (20 + 21 + 22) * (70 + 71)
所以只要求出因式分解,就可以利用回圈求得等式后面的值,将该值除以2就是真因数和了;等
式后面第一眼看时可能想到使用等比级数公式来解,不过会使用到次方运算,可以在回圈走访
因式分解阵列时,同时计算出等式后面的值,这在下面的实作中可以看到。
#include <stdio.h>
#include <stdlib.h>
#define N 1000
#define P 10000
int prime(int*); // 求质数表
int factor(int*, int, int*); // factor
int fsum(int*, int); // sum ot proper factorint main(void) {
int ptable[N+1] = {0}; // 储存质数表
int fact[N+1] = {0};
// 储存因式分解结果
int count1, count2, i;
count1 = prime(ptable);
for(i = 0; i <= P; i++) {
count2 = factor(ptable, i, fact);
if(i == fsum(fact, count2))
printf("Perfect Number: %d\n", i);
}
printf("\n");
return 0;
}
int prime(int* pNum) {
int i, j;
int prime[N+1];
for(i = 2; i <= N; i++)
prime[i] = 1;
for(i = 2; i*i <= N; i++) {
if(prime[i] == 1) {
for(j = 2*i; j <= N; j++) {
if(j % i == 0)
prime[j] = 0;
}
}
}
for(i = 2, j = 0; i < N; i++) {
if(prime[i] == 1)
pNum[j++] = i;
}
return j;}
int factor(int* table, int num, int* frecord) {
int i, k;
for(i = 0, k = 0; table[i] * table[i] <= num;) {
if(num % table[i] == 0) {
frecord[k] = table[i];
k++;
num /= table[i];
}
else
i++;
}
frecord[k] = num;
return k+1;
}
int fsum(int* farr, int c) {
int i, r, s, q;
i = 0;
r = 1;
s = 1;
q = 1;
while(i < c) {
do {
r *= farr[i];
q += r;
i++;
} while(i < c-1 && farr[i-1] == farr[i]);
s *= q;
r = 1;
q = 1;
}
return s / 2;
}
  • 发表于 2021-11-29 15:45
  • 阅读 ( 867 )
  • 分类:C/C++开发

0 条评论

请先 登录 后评论
小威
小威

64 篇文章

作家榜 »

  1. 轩辕小不懂 2403 文章
  2. 小柒 1658 文章
  3. Pack 1135 文章
  4. Nen 576 文章
  5. 王昭君 209 文章
  6. 文双 71 文章
  7. 小威 64 文章
  8. Cara 36 文章