page contents

简述一下随机森林的原理,随机森林的构造过程。

轩辕小不懂 发布于 2021-09-18 14:35
阅读 514
收藏 0
分类:资源下载
1973
Nen
Nen
- 程序员

随机森林是bagging算法的代表,使用了CART树作为弱分类器,将多个不同的决策树进行组合,利用这种组合来降低单棵决策树的可能带来的片面性和判断不准确性。对于普通的决策树,是在所有样本特征中找一个最优特征来做决策树的左右子树划分,而随机森林会先通过自助采样的方法(bootstrap)得到N个训练集,然后在单个训练集上会随机选择一部分特征,来选择一个最优特征来做决策树的左右子树划分,最后得到N棵决策树,对于分类问题,按多数投票的准则确定最终结果,对于回归问题,由多棵决策树的预测值的平均数作为最终结果。随机森林的随机性体现在两方面,一个是选取样本的随机性,一个是选取特征的随机性,这样进一步增强了模型的泛化能力。

请先 登录 后评论